If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-36x+20=0
a = 3; b = -36; c = +20;
Δ = b2-4ac
Δ = -362-4·3·20
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{66}}{2*3}=\frac{36-4\sqrt{66}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{66}}{2*3}=\frac{36+4\sqrt{66}}{6} $
| 5y+31=1 | | 475+z=18 | | 5.3-2.8x-7.1=3.9x | | 5(x-2)+2x=2(x+5)x | | 4(x+1)=94+3x | | 10z=1000000 | | 2d(1.15)/50=30 | | -7(3u-1)=8u=5(u+2) | | 5x-11+9x+18=90 | | 2x/5=1=3 | | 18=14g | | 1/4(8+x)+24=2x+5 | | 0.3x+0.6=x+2 | | 4x+14=2x+69 | | 2x^2/(3=50 | | 3d^2-46d+15=0 | | 8y+3=-61 | | 7/10=j/3.1 | | 7/10=x/3.1 | | 1/4b2=16 | | -3x-12=60 | | v.12=5.10 | | 126=3x+6 | | 6g=13 | | 8=y/3-4 | | 6w+3=72 | | 85+6x+61=180 | | u=25000( | | 3(5+y)=27 | | 3x+4=7-x(x+17) | | 2/5y=12/75 | | 30-x=40x |